STYREX® 325

Recycled HIPS

QUALITY CUSTOM PLASTIC SHEET

Part of the RE • COVER™ family of recycled products

STYREX® 325 is our recycled content, litho-offset material. This material is co-extruded with all-virgin cap layers to maintain a familiar, white print surface. The recycled content is extruded in the core of the sheet and offers increased opacity at no additional cost!

MATERIAL ATTRIBUTES:

A/B or A/B/A sheet construction available

Provides a prime print surface

Contains up to 50% recycled content

	111	F C
-11		
The second secon		
76 461		

RESIN PROPERTY	UNIT	VALUE	ASTM METHOD
Specific Gravity	g/cm³	1.04	D792
Vicat Softening Point	°F	208	D1525
Heat Deflection Temperature	°F	187	Internal
Rockwell Hardness	"L" scale	49	D785
Notched Izod Impact @ 73°F	ft-lb/in	1.4	D256
Tensile Modulus	psi	247,000	D638
Flexural Modulus	psi	312,000	D790

STYREX® HIPS

High Impact Polystyrene (HIPS) is commonly used in printon-plastic applications. It is an economical choice for P.O.P. displays, signage and tags. At GOEX, we offer a broad range of STYREX® HIPS products that can be customized to your specifications for size, color, opacity, surface finish, and dyne level. Our STYREX® products can be printed, die cut, router cut, formed and fabricated to meet the needs of your application.

STANDARD CAPABILITIES		
Color	White	
	Custom Colors	
Gauge/Thickness	Minimum020"	
	Maximum060"	
Surface Finish	Gloss	
	Matte	
	Matte	
	Matte	
Roll Width	Minimum - 5"	
	Maximum - 60"	
Roll Diameter	Minimum - 18"	
	Maximum - 48"	
Core Size	3" or 6"	
Sheet Width	Minimum - 20"	
	Maximum - 63"	
Sheet Length	Minimum - 18"	
	Maximum - 128"	
Options	Corona Treatment - 0, 1 or 2 sides	

DISCLAIMER:

All listed technical data are typical values intended for your guidance. Final testing and fitness for use are determined by the end customer and intended use. GOEX encourages customers to conduct their own test to determine physical properties.

